Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
نویسندگان
چکیده
In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the "dipolar" mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental results are well in agreement with finite element method (FEM) calculations in which the main geometrical parameters characterizing the NAs have been derived from electron microscopy imaging analysis. The main advantage of dimers as compared to monomers lies in the generation of a well-defined and highly enhanced electromagnetic field (the so-called "hot spots") within the interparticle gap that can be exploited in photo-catalysis, magneto-plasmonics or nano-sensing.
منابع مشابه
Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas
Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. ...
متن کاملOptimizing plasmonic nanoantennas via coordinated multiple coupling
Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field...
متن کاملControl of plasmonic nanoantennas by reversible metal-insulator transition
We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metalli...
متن کاملVibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light-matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either...
متن کاملImpact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
We report on the impact of the differing spectral near- and far-field properties of resonantly excited gold nanoantennas on the vibrational signal enhancement in surface-enhanced infrared absorption (SEIRA). The knowledge on both spectral characteristics is of considerable importance for the optimization of plasmonic nanostructures for surface-enhanced spectroscopy techniques. From infrared mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2015